Exoskeleton Catalogue

Published January 2017

To give you an overview of today's robotic exoskeletons, we compiled a catalogue with a selection of state of the art systems sorted by their main purpose and application. The selected systems should not be understood as an endorsement of a particular institution or manufacturer. They were simply chosen to show an interesting variety of existing exoskeletons. Please note that we are not responsible for the content of external websites.

Performance Augmentation

Exoskeletons for performance augmentation are mostly used by healthy users to enhance their perfomance, augment their strength or reduce exhaustment and fatigue during physically demanding tasks. These systems apply a supportive torque directly to the user's joint or relieve the user of the weight of a payload or the user's own body weight.

Picture: Lokheed Martin

Fortis

 

Company: Lockheed Martin

Country: USA

 

The Fortis exoskeleton is a passive lower limb device that enables the wearer to use heavy tools. The exoskeleton counterbalances the weight of the tool and transfers it to the ground to relieve the user.

 

Link to developer

Picture: Cyberdyne

HAL

 

Company: Cyberdyne

Country: Japan

 

The HAL exoskeleton is available for a variety of applications, including a version for full body support. The company was among the first to develop robotic exoskeleton technology.

 

Link to developer

Picture: UC Berkley

BLEEX

 

University: Berkley

Country: USA

 

The Berkeley Lower Extremity Exoskeleton (BLEEX) is a system for strength and endurance enhancement.

The DARPA funded project started in 2000 with the goal to develop an exoskeleton that allows the user to carry a heavy load.

 

Link to developer



Restoration of Motor Functionality

Exoskeletons are used to restore lost motor funtionality after injury or desease. A typical application is the enablement paraplegic users to walk again with the help of the robotic exoskeleton. In such a case, the exoskeleton provides the power to move the legs while the user is triggering and controlling the exoskeleton movements.

Picture: ReWalk

ReWalk

 

Company: ReWalk

Country: Israel

 

The ReWalk is a lower limb robotic exoskeleton that restores functional gait for spinal cord injured users with a complete loss of leg motor function. It is commercially available and has already CE and FDA approval.

 

Link to developer

Picture: US Bionics

Phoenix

 

Company: US Bionics

Country: USA

 

The phoenix is a lower limb device designed to enable
people with mobility disorders to be upright and mobile. It only has one actuator per leg in the hip joint to reduce weight and price. Phoenix is an investigational device that is not yet available commercially.

 

Link to developer

Picture: Parker Hannifin Corp.

Indego

 

Company: Parker Hannifin

Country: USA

 

The Indego is a lower limb system that is based on an exoskeleton from the Vanderbildt University. It is commercially available for clinical and personal use.

It comprises a modular design and can be disassembled for transportation.

 

Link to developer



Rehabilitation

Rehabilitation exoskeletons are mostly used in a clinical setup where the are part of a broader rehabilitation program. Such systems a commonly used for stroke or spinal cord injured patient to facilitate recovery of lost motor functionality. The exoskeletons provide enough support to the patient to enable intensive training of gait or arm movements.

Picture: Hocoma, Switzerland

Lokomat

 

Company: Hocoma AG

Country: Switzerland

 

The lokomat is a gait rehabiliation exoskeletons that has been on the market since 2001.

 

Link to developer

Picture: University Twente

Lopes

 

University: Twente

Country: Netherlands

 

The LOPES (LOwer-extremity Powered ExoSkeleton) is a robotic device for gait training and assessment of motor function in stroke patients.

 

Link to developer

Picture: Ekso Bionics

Ekso GT

 

Company: Ekso Bionics

Country: USA

 

The Ekso GT is a rehabilitation device that enables overground gait training of stroke and spinal cord injury patients in rehabilitations centers workdwide.

 

Link to developer



Investigating the Human

In addition to provide support to the user, experimental exoskeletons are also used to conduct investigations on the user within. A widely used approach to investigate any system (including the human) is to apply a perturbation and observe the reaction. As exoskeleton are physically interacting with the user, and can conviniently be equipped with a variety of sensors, they can be a very helpful tool for such experiments. Devices are used for example to investigate human motor learning or to identify physiological charachteristics, often with the goal to feed this knowledge back into the development of prosthesis and exoskeletons.

Picture: Yale University

Quasi Passive Knee-Ankle-Foot Orthoses

 

University: Yale

Country: USA

 

This device was designed to biomechanically charachterize the human lower limb joints with the aim to use this knowledge to design better prostesic and orthotic devices.

 

Link to developer

Picture: University Sao Paolo

Exoskeleton for gait control research

 

University: Sao Paulo

Country: Brazil

 

This exoskeleton was designed to investigate the mechanical properties of the human knee and ankle joint during specific gait phases.  These properties are then intended to be used in the control of  powered prostheses, robotic exoskeletons or other devices working in parallel with the human body.
 

Link to developer

Picture: ETH Zurich

Knee Perturbator

 

University: ETH Zurich

Country: Switzerland

 

The Knee Perturbator is a robotic knee exoskeleton that was designed to impose perturbation on the user an measure the reaction to identify biomechanical human knee properties.

 

 

Link to developer